An inverse random source problem for the Helmholtz equation
نویسندگان
چکیده
This paper is concerned with an inverse random source problem for the one-dimensional stochastic Helmholtz equation, which is to reconstruct the statistical properties of the random source function from boundary measurements of the radiating random electric field. Although the emphasis of the paper is on the inverse problem, we adapt a computationally more efficient approach to study the solution of the direct problem in the context of the scattering model. Specifically, the direct model problem is equivalently formulated into a two-point spatially stochastic boundary value problem, for which the existence and uniqueness of the pathwise solution is proved. In particular, an explicit formula is deduced for the solution from an integral representation by solving the two-point boundary value problem. Based on this formula, a novel and efficient strategy, which is entirely done by using the fast Fourier transform, is proposed to reconstruct the mean and the variance of the random source function from measurements at one boundary point, where the measurements are assumed to be available for many realizations of the source term. Numerical examples are presented to demonstrate the validity and effectiveness of the proposed method.
منابع مشابه
Inverse Random Source Scattering for the Helmholtz Equation in Inhomogeneous Media
This paper is concerned with an inverse random source scattering problem in an inhomogeneous background medium. The wave propagation is modeled by the stochastic Helmholtz equation with the source driven by an additive white noise. The goal is to reconstruct the statistical properties of the random source such as the mean and variance from the boundary measurement of the radiated random wave fi...
متن کاملDetermination of a Source Term in an Inverse Heat Conduction Problem by Radial Basis Functions
In this paper, we propose a technique for determining a source term in an inverse heat conduction problem (IHCP) using Radial Basis Functions (RBFs). Because of being very suitable instruments, the RBFs have been applied for solving Partial Dierential Equations (PDEs) by some researchers. In the current study, a stable meshless method will be pro- posed for solving an (I...
متن کاملSolving the inverse problem of determining an unknown control parameter in a semilinear parabolic equation
The inverse problem of identifying an unknown source control param- eter in a semilinear parabolic equation under an integral overdetermina- tion condition is considered. The series pattern solution of the proposed problem is obtained by using the weighted homotopy analysis method (WHAM). A description of the method for solving the problem and nding the unknown parameter is derived. Finally, tw...
متن کاملParameter determination in a parabolic inverse problem in general dimensions
It is well known that the parabolic partial differential equations in two or more space dimensions with overspecified boundary data, feature in the mathematical modeling of many phenomena. In this article, an inverse problem of determining an unknown time-dependent source term of a parabolic equation in general dimensions is considered. Employing some transformations, we change the inverse prob...
متن کاملOn a Nonlinear Inverse Problem in Viscoelasticity
We consider an inverse problem for determining an inhomogeneity in a viscoelastic body of the Zener type, using Cauchy boundary data, under cyclic loads at low frequency. We show that the inverse problem reduces to the one for the Helmholtz equation and to the same nonlinear Calderon equation given for the harmonic case. A method of solution is proposed which consists in two steps : solution of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 83 شماره
صفحات -
تاریخ انتشار 2014